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Abstract

We present a C++ package, named CONIS, designed to compute and visualize the pla-
nar curves generated via the subdivision scheme proposed in [3]. We describe the software
package, provide instructions to use it, and showcase the package using several numerical
tests.
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1 Introduction

In this paper, we provide a C++ package for computing and visualizing the planar curves gen-

erated via the subdivision scheme proposed in [3]. The subdivision scheme under discussion
(0) (0)
i i >
i € Iy, at these vertices, and constructs a sequence of refined polygons {P(k)} >0 such that:

takes as input a planar polygon P©) with vertices p; ’, i € Iy, as well as the (unit) normals n

« the vertices of P*~1) are also vertices of P*) for any k > 1, which guarantees that the
vertices of P(©) are also vertices of P®) for any k > 0, i.e., the subdivision scheme is
interpolatory;

* all types of conic sections are reproduced whenever the vertices of P(©) and the associated
normals are arbitrarily sampled from them;

* avisually pleasing, smooth curve without unwanted oscillations is generated in the limit
of the subdivision process.
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To clarify how the subdivision scheme works, we provide a detailed description of all the
key operations to be performed at each subdivision step to map the coarser polygon pk-1) —
(k=1) = {n(kfl), i € I_1}, to the refined polygon

{pgkfl), i € I} equipped with normals N ;
Pk = {pl(k), i € I} and its normals N*) = {nl(k), i € I}. As we are concerned with a binary
subdivision scheme, we consider index sets I;_1, I; such that |I;| = 2|[;_|. In other words,
at each subdivision step we double the number of vertices (and hence of normals too). This

means that, for each i € I;_|, we need a rule to compute both pgf.), ngf) and pggr], ng;)H. Their

computation is described by first assuming that P~ forms a convex polygon.

1.1 Pseudocode

Foreachie I;_q:

1. Set pgf.) = pgkfl) and ng;) — <,

]

2. Define the local neighbourhood of the edge pl(kfl)pg:l) by considering the 4 consecutive

point-normal pairs

(k—1) _(k—1) (k—1) _(k—1) (k—1) __(k—1) (k—1) _(k—1)
(P s ), (e oy ), (P )s (P My ) (1)
Foreach j € {i—1,i,i+1,i+2}, let
k—1 T k—1 T
pE ) = [xj,yj] s ng. ) = [n)jc,ni] 5
and construct the matrix
(x5 i 2% 2x-1 2y | 0o 0 0 0 ]
X; yl-2 2X;yi 2x; 2y; 1 0 0 0 0
X VL X 2Xg 2y 1 0 0 0 0
Xy Yha 2Xyavi2 X2 2y | 0o 0 0 0
2xi.1 O 2yi1 2 0 O -n, 0 0 0
A—| 0O 21 244 O 2 0 -, 0 0 0 L@
2x; 0 2y; 2 0O O 0 —n; 0 0
0 2y; 2x; 0 2 0 0 —nf 0 0
261 0 2% 2 0 0 0 0 -n, O
0 2yin1 2% 0 2 0 0o 0 -n, 0
22 O i 2 0 0 00 0 -,
L0 2y 22 0O 20 0 0 0 —mulie

Then let w” and w” be large positive numbers (e.g., w! = 10°, w" = 10°), whereas let
wi be a smaller positive value (e.g., ), = 1). After defining w) = tw/, with 7 > 1 (e.g.
T = 10), build the 12 x 12 diagonal matrix

- v Vv 1% 1% n n 7 n n n n n
W =diag(w),wh, wo, wo, wo. wo Wi wh wh wh wh wh)

and compute the right-singular vector q' of WA’ that corresponds to its smallest singular
value. Note that q is a vector in R!? and the first 6 of its entries provide the coefficients

q20,902-911,910, 401,400 of the conic

T
X q20 411 410 X

¢ fy)= |y g qo2 qo1| |(y| =0 (3)
1 g0 qo1 qoo| |1
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which best fits the 4 point-normal pairs in (1), whereas the last 4 entries of ¢’ determine
(k—=1) _(k—1)

the scaling factors @;_1, 0, 01, Q> for the normals n;”; "’ m; ,ng_ﬁl),nggl).
: : k—1 k—1
3. For each edge given by vertices pl( ) = [xi,vi]T, pl( ) ) = [xi1,vir1]T, compute
(k—1) (k—1)
P; +P;
my; | = — > ol 4)
edge _ ((k=1)  (k=1)\1L _ |Yi— i+l
n; = =Py P )= [XM _xi] : (5)
and then set the so-called edge vertex as
pl 1), if [fmoiy —1(0) 2 < [mois 1 —1(22) ]2, ©)
2] (), otherwise,
where
T
d it+xi i+yi
1(r) = my;4 —an’ g — [% +1(yi —Vit1), H% +t(xip1—x)| , teR. (7)

The real parameters #; and , appearing in (6) are the two solutions of the quadratic
equation

T

(xi+xig1)/24+1 (i — Yit1) 20 q11 qio| | (xi+xir1)/2+1(i—Yit1)

i+ yir1)/2+ (xip1 —x;) qii 902 qoi| | (i+yir1)/24+t (X1 —x)| =0 (8)
1 qi0 4901 400 1

in the unknown ¢, which identifies the (two) intersections between the line 1(z) and the
conic % previously computed in (3).

(k)

4. Finally select ny;, ; as the normal sampled from the said conic ¢’ at the point p(k)

2i+1"

We now describe the refinement step in case P*~1) is a non-convex polygon. Following the
idea proposed by Romani et al. [2], we start splitting the control polygon P*=1 into a collection
of globally convex sub-polygons. The splitting takes place by introducing the inflection point

Pinfi = M2, ©)
whenever the points pl(f_ll) and p(k_l)

i+2
pgk_l)pg:l). As our method uses both points and normals to find the best conic fit, the normal

nj,q at the inflection point pip also needs to be set appropriately as it influences the resulting
curve. In particular, we define

lie on different half planes with respect to the edge

i

ng = nd . if Zn?nﬂnedge < Zni]nﬂn?dge’ (10)
infl = n! otherwise
infl ;
where
edge (k—1) (k—1) (k—1)
0 n; Piy1  — P . (03 1
ninﬂ:(l_yo) d + % 1 1 with Yo==—|——=|,
e I e A 2 | n 2
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and
edge (k—]) (k—]) (k—])
| i Piy — P : it 1
== —Ge Y with y=5—|———3
e P R A 2 | = 2
In the above formulas, ¢i(k—1) is the angle between pgﬁl)pl(k_l) and pl(k_l)pg:l) whereas

q)i(ffl) is the angle between pgkfl)pg:l) and pgﬁl) pgzl).

We emphasize that once the inflection points have been inserted, a modified polygon p-1)
is obtained and instructions in Steps 1-4 are repeated to refine it. However, when considering
the edge with endpoints pl(k_l) Pinfi, Some changes are required to define its new edge vertex.
Specifically, the local neighbourhood of this edge must be modified by considering the 4 con-
secutive point-normal pairs

k=1) (k-1 k=1) (k-1 k=1) (k-1
(2 5, e ) e ), (i, mian),
and the weight matrix W collecting the weights assigned to each vertex and to each normal in
such a local neighbourhood becomes

- 4 Vv v v n n n n n n n n
W =diag(w),w,,w,,wh,wh wh Wi wi wh wh, wh wh).

1)

Similarly, the definition of the new edge vertex for the edge with endpoints pjng pl(f: is mod-

ified by considering as local neighbourhood the 4 consecutive point-normal pairs

k—1 k—1 k—1 k—1 k—1 k—1
(Pints i), (01, ), (850 05, 85, ")

and the corresponding weight matrix W becomes
- % v 1% \% n n n n n n n n
W =diag(w),w,,wy, wh, wh wh Wi wh wi o wh wh wh).

These changes are due to the fact that, after inserting the inflection point, the three points
(k—1) (k—1)

p; , Pinfl, P;;; = are collinear and thus, if used all together to define the local neighbourhood,
they give rise to a singular conic.

2 Description of the code

After the above summary of the main theoretical results published in [3], we now describe the
code implemented in C++ and made available at

https://github.com/BugelNiels/conic-subdivision.

For the design of the framework, we mainly focussed on making the individual components
simple, reusable, and testable. Additional care was taken to make the implementation as nu-
merically accurate as possible while keeping it performant. Finally, the GUI was designed to
allow for easy testing of various approaches.

The software consists of two main components: the core library and the GUI. The core
library (Section 2.1) contains all the necessary code for defining curves and performing actions
such as conic subdivisions on them. The GUI component (Section 2.2) provides a visual inter-
active program on top of the core library. By design, the core library does not depend on the
GUI and can be built as a stand-alone library. We now discuss these two components in detail.

N. Biigel, L. Romani, J. Kosinka 4
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ConisCurve Curve
- subdivider : ConicSubdivider 9 - vertices: Vector2D[0..*]
1
- controlCurve : Curve - normals: Vector2D[O0..%*]
- subdivCurve : Curve .
+ isClosed() : bool
- listeners: Listener[0..*] X
+ recalculateNormals() : void
+ setControlCurve (curve: Curve) : void
+ getControlCurve() : Curve 1 o- <<Interface>>
. ad ConisListener
+ getSubdividedCurve () : Curve
+ subdivideCurve (level: int) : void + onListenerUpdated() : void
1
1
ConicSubdivider PatchPoint
- conicFitter : ConicFitter - vertex: Vector2D
1 0.*
L . X extracts - normal: Vector2D
+ subdivide (curve: Curve, level: int) : void
. X - vertexWeight: real t
+ extractPatch (curve: Curve, idx: int, -
maxPatchSize: int) : PatchPoint[0..*] - normalWeight: real t
+ getInflPointCurve (curve: Curve) : Curve
1
?1
ConicFitter Conic
+ fitConic(patch: PathPoint[0..*]) : Conic + Conic(coefficients: Matrix3D) : Conic
| 1+ sample (ro: Vector2D, rd: Vector2D,
fits p: Vector2D [out], n: Vector2D [out]) : bool

Figure 1: A simplified UML diagram of the CONIS core library.

2.1 Core Library

The basic layout of the core library can be seen in Figure 1. The primary interface for the
library is the ConisCurve class. This class contains three main items relating to subdivision:

* a control curve that can be manipulated;
¢ a subdivider that can subdivide the control curve;
* a subdivided curve to store the result of the subdivision process in.

The ConisCurve contains a set of listeners to implement the Observer pattern. Any time a no-
table change happens to either the control or subdivided curve, all the listeners will be notified.
This allows us to easily attach a GUI to this library without the library having knowledge of a
GUIL. This has the added benefit that a command-line interface would be trivial to add.

At the core of the framework is the Curve class. It represents a collection of point-normal
pairs and facilitates different operations to manipulate these points and normals. It is com-
pletely decoupled from conics or the subdivision process and can be used independently from
these. Similarly, the Conic class is solely a container for the conic coefficients, facilitating
different operations on these such as finding the intersection between a ray and said conic via
the sample method. The Conic class is also independent and decoupled from the Curve class
and the subdivision/fitting processes.

N. Biigel, L. Romani, J. Kosinka 5
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The conic fitting process (cf. Step 2 in Section 1.1) happens in ConicFitter. This class
takes a collection of point-normal pairs (and their weights) as input and produces the best-
fitting conic using singular value decomposition. The subdivision process happens through the
ConicSubdivider class which takes a Curve and a number of subdivision levels as input. The
input is used to perform the subdivision process in-place, i.e. the provided curve argument will
contain the subdivided curve once the process is finished. To reduce the number of memory
allocations during the subdivision process, the ConicSubdivider uses double-buffering. At
each subdivision step, the subdivision result is stored in bufferCurve which is then used as
the input to the next subdivision step, effectively swapping the buffers. Before the subdivision
process starts, the initial buffer is chosen (and populated) such that the final result always ends
up back in the provided Curve argument. The capacity of the bufferCurve can be maintained
between multiple subdivisions so that this buffer does not have to be reallocated. If a non-
convex curve is provided as input, the necessary inflection points are inserted according to
Equations (9) and (10) prior to starting the subdivision process.

Code 1: Recursive subdivision method

void ConicSubdivider: :subdivideRecursive (Curve &controlCurve,
Curve &subdivCurve,
const int level) {

if (level == 0) {

return;
}
int n = controlCurve.numPoints() » 2 - 1;
if (controlCurve.isClosed()) {

n +=1;

}
subdivCurve.getVertices () .resize (n);
subdivCurve.getNormals () .resize (n);

for (int 1 = 0; i < n; i += 2) {
subdivCurve.setVertex (i, controlCurve.getVertex(i / 2));
subdivCurve.setNormal (i, controlCurve.getNormal(i / 2));

}

for (int 1 = 1; i < n; i += 2) {
edgePoint (controlCurve, subdivCurve, 1i);

}

for (int &inflIdx: inflPointIndices_) {
inflIdx *= 2;

}

subdivideRecursive (subdivCurve, controlCurve, level - 1);

Subdivision is implemented using recursion as this makes the usage of double-buffering
trivial. This can be seen in Code 1. Note that we keep track of the indices of the inflection points
to be able to easily extract convex parts. That said, a single subdivision is relatively simple:
copy all the old vertex points to a new curve and then insert all the edge points between these old
vertices. The edgePoint method inserts a new point-normal pair at index i by first extracting
a patch of point-normal pairs surrounding the edge in question, then fitting a conic to this patch
(using ConicFitter), and finally sampling a point from this conic (using Conic: : sample). A
shortened version of the edgePoint method can be seen in Code 2; cf. Step 3 in Section 1.1. It
is important to note that executing resize on a std: : vector will not shrink existing memory
allocations [4]. This means that the buffer will only ever grow in size. Consequently, the first
full subdivision process on a curve will incur a few allocations on the buffer, but in subsequent
executions the buffer will not need re-allocations. The exception to this is when the number of
subdivision steps grows or the control curve gains extra vertices.

N. Biigel, L. Romani, J. Kosinka 6
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Code 2: Method for calculating edge point.

void ConicSubdivider: :edgePoint (const Curve &controlCurve, Curve &subdivCurve, const int i) {
const int n = subdivCurve.numPoints();
const int previdx = (i -— 1 + n) % n;

const int nextIdx = (i + 1) % n;

// Construct origin and direction of the ray we use to intersect the found conic

const Vector2DD origin = (subdivCurve.getVertex (prevIdx) + subdivCurve.getVertex (nextIdx))
/ 2.0;

Vector2DD dir = subdivCurve.getVertex (prevIdx) - subdivCurve.getVertex (nextIdx);

// rotate the line segment counterclockwise 90 degree to get the normal of it

// Note that dir is not normalized! This is to prevent introducing further rounding errors

// The conic solver finds a multiple of the normal, so the length does not matter
dir = {dir.y(), -dir.x()};

// i/2 as we extract the patch from the control curve (while we’re currently in the index
space of the subdiv curve)
std: :vector<PatchPoint> patchPoints = extractPatch(controlCurve, i / 2, settings_.
patchSize);
const Conic conic = fitter_.fitConic (patchPoints);
Vector2DD sampledPoint;
Vector2DD sampledNormal;
bool valid = conic.sample(origin, dir, sampledPoint, sampledNormal);
if (!'valid) {
// The full code tries to expand the neighbourhood here before giving up
// No valid conic found, set to midpoint and its normal
sampledPoint = origin;
sampledNormal = dir;
}
subdivCurve.setVertex (i, sampledPoint);
subdivCurve.setNormal (i, sampledNormal);

22 GUI

The GUT sits on top of the core library and is responsible for creating an interactive visualization
of the curves for the user. The GUI is implemented using Qt and the visualisation of the curve(s)
is done via OpenGL. To ensure the view is updated when required, the GUI implements the
Listener interface. Each time the onListenerUpdated method is triggered, it will update
the curve buffers in OpenGL and render them.

The rendering of the curves is done via OpenGL shaders, where the control curve and the
subdivided curve use different shaders. The most important distinction between the two is
the geometry shader for the subdivided curve, which is used to draw the curvature combs to
visualise the curvature. To do this, we use osculating circles to determine the curvature at each

vertex. The idea is as follows: for three consecutive vertices pl@l, pgk), pl(i)l, construct a circle
of radius R; that passes through them. The curvature «; at pl(k) is then calculated as

Ki= —.

(k)

i

(k)

i

(k)

The resulting curvature comb is then drawn from p +As- K- nl(k), where n;™ is the unit

normal of pl(k) and Ay is a global scaling factor to control the final size of the curvature combs.
The shader code for finding the circle and returning the corresponding curvature can be seen
in Code 3. This example uses dvec and double as the additional precision is useful at higher

subdivision levels.

to p
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Code 3: Curvature calculation in shader

double calcCurvatureCircular (dvec2 a, dvec2 b, dvec2 c) {

dvec2 ab = a - b;

dvec2 cb = ¢ - b;

dvec2 ac = a - c;

double denom = (dot (ab, ab) *x dot(cb, cb) * dot(ac, ac));
if (denom == 0.0) return 0.0;

dvec3 t = cross(dvec3(ab, 0.0), dvec3(cb, 0.0));
return sqgrt(dot(t, t) / denom);

2.3 Numerical Accuracy

As subdivision is a recursive process, numerical errors are amplified at every subdivision step.
As finding the best-fitting conic relies on solving a system of equations using least squares
fitting, the method is more sensitive to numerical errors compared to schemes with fixed rules,
such as those based on B-splines. The most trivial way to improve precision is to use a high-
precision data type. In our framework, we use the data type real_t defined as a long double.
This data type is an extended-precision format [1] equivalent to an 80-bit floating point on
(most) x86 processors. It also happens to be the highest-precision data type that the Eigen
library [6] supports at the time of writing. While other types such as __float128 exist, these
are not supported by the Eigen library and are typically significantly slower due to lack of
hardware support. While using a high-precision data type is the easiest improvement we can
make to obtain more accurate results, it is not sufficient when going to higher subdivision levels
(k > 10). Although most practical scenarios do not require going above k = 6 subdivision
steps, we use a number of techniques for improving numerical accuracy, allowing the method
to produce smooth curves at even higher subdivision levels.

We start by observing that the efforts for improving precision should be focused on the edge
point calculations. After all, the vertex points are copied directly from the previous subdivi-
sion step without any calculations. As we are using a library for the conic fitting process, the
improvements to be done here are limited. However, finding the conic is only one part of the
process; once a conic has been found, we need to sample a point-normal pair from it. This
process can be divided into two parts: finding the intersection point (Step 3) and finding the
normal at said point (Step 4).

The intersection point is found through a ray-conic intersection by solving the quadratic
equation described in (8) which can be shortly rewritten as at> + 2bt 4 ¢ = 0 where

~T Ve =T a =T -
a=n; Qf;, b=n; Qmy |, c= m2i+1Qm2i+17

with
q20 411 410
Q= [q11 q02 qo1|,
q10 401 400

and ;| and f; denoting my; | and n?dge in 3D homogeneous coordinates, respectively.
In our implementation, owing to the symmetry of the conic coefficient matrix, we thus

compute
—b+Vb*—ac

a

(11)

o=

If a — 0, the equation becomes linear and we obtain only one solution: # = 5. When there
are two solutions, we pick the value closest to 0. Instead of comparing 7 and 7, to determine

N. Biigel, L. Romani, J. Kosinka 8
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which is the smallest, it can be deduced from (11) that b can be used to determine whether 7 or
tp will be smaller. As such, only one of the values needs to be evaluated and ¢ can be calculated

directly using i
btV — -
f— {'———7;——25, if b <:0,

—b—Vb%—ac (12)
a )

otherwise.

The discriminant calculation can suffer from floating point errors. To reduce these errors,
we use Kahan’s algorithm [7] to calculate b*> — ac. The calculation leverages fused multiply-
add (fmal) instructions to reduce floating errors that occur when adding a small value to a
significantly larger one, ensuring the result remains precise and accurate. The implementation
of this can be seen in Code 4. Further error correction techniques, such as those used by the
Racket maths library [8], could be implemented to improve the accuracy even further if needed.

Code 4: Implementation of Kahan’s method to compute ab — cd with a small error.

static real_t diffOfProducts(const real_t a, const real_t b, const real_t ¢, const real_t d) {
const real_t w d x c;
const real_t e fmal(-d, c, w);
const real_t £ fmal(a, b, -w);
return £ + e;

Once the intersection point is obtained, the normal of the conic is sampled at said point
(Code 5). Similar to the intersection calculation, we make use of fused multiply-add instruc-
tions to reduce the floating errors. Note that the matrix described in (2) allows for a unique
scaling factor for each normal. As such, one final important trick we use here is to skip the
normalization of the sampled normal to prevent needlessly introducing additional numerical
errors. It turns out that skipping this normal normalization leads to a significant increase in the
numerical accuracy of our method as we highlight in Section 3.

Code 5: Calculating the normal of a conic with coefficients Q_ at a given point p.

Vector2DD Conic::conicNormal (const Vector2DD &p) const {
real t xn = fmal(Q (0, 0), p.x(), fmal(Q (0, 1), p.y(), Q (0, 2)));
real t yn = fmal(Q (1, 0), p.x(), fmal(Q (1, 1), p.y(), @ (1, 2)));
return {xn, yn};

3 Code usage and numerical tests

In this section, we show how to use the C++ package CONIS (Section 3.1) and present several
numerical tests and results, focusing on conic reproduction (Section 3.2) and highlighting the
impact of the techniques described in Section 2.3.

Note that the figures in the original paper were constructed by exporting the subdivision
curves from the CONIS framework and visualizing them using MATLAB. All the curve figures
in this paper were generated using the CONIS framework directly.

3.1 Code Usage

As the CONIS framework has a clear separation between the core library and the GUI, it is
relatively straightforward to set up a short demo program using just the core library. For exam-
ple, Code 6 demonstrates a simple method for loading a curve from a file, subdividing it a few
times, and writing it back to a different file. The input file format follows a structure similar

N. Biigel, L. Romani, J. Kosinka 9
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© Length Weighted Normals

Figure 2: GUI of the CONIS framework.

to wavefront .obj files. It is simply an ordered collection of vertices optionally followed by
another ordered collection of the associated normals. Each vertex and normal entry resides on
a separate line and has the format <prefix> x y. For vertices the prefix v is used, while for
normals the prefix vn is used. For the output, the same file format can be used, or it is also
possible to only output an ordered list of vertices without any prefix.

Code 6: Basic usage of the CONIS core library.

using namespace conis::core
void demo (std::string& inputPath, std::string& outputPath, int subdivLevels) {

SubdivisionSettings subdivSettings;
ConicSubdivider subdivider (subdivSettings);
Curveloader loader;

CurveSaver saver;

Curve curve = loader.loadCurveFromFile (inputPath);
subdivider.subdivide (curve, subdivLevels);
saver.saveCurveWithNormals (outputPath, curve);

To get the full framework including the GUI up and running, there is a script called build.sh
to allow for easy compilation, testing and running of the application. For example, running
./build.sh --run --test compiles the program, runs the unit tests and starts the full ap-
plication. The GUI comes with a number of knobs and dials to test various settings for the
subdivision process, this can be seen in Figure 2. Additional test settings are available in the
GUI when the program is compiled in debug mode.

3.2 Numerical tests and conic reproduction

We assess the numerical precision of the method in two ways. First, the smoothness of a
subdivided curve can be visually assessed through the usage of curvature combs. Second,
we present a series of tests implemented using GoogleTest [5] that (1) sample point/normals
from a given conic, (2) construct a subdivided curve using our method, and (3) calculate the
error between the points on the subdivided curve and the original conic. As conic sections

N. Biigel, L. Romani, J. Kosinka 10
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Conic Error Metric k=4 k=28 k=12
5 E® 1.97-107% 4.70-107"7 1.57-10714
Xy =25 (k) _18 _15 13
Enos 8.67-10 1.35-10 1.04-10
(k) 10—18 10-17 10-15
42 19y = 36 E(k) 1.37-10 6.54-10 3.46-10
Emax 6.17-107'% 1.10-1075 1.53-10°13
5 E® 1.14-1077  4.67-1071% 4.55.10713
Epax 597-10716 354.10713 2.31-10712
- EW 3.54-10716 4.05-10715 3.83.10713
EX 353.10°15 1.13-10712 8.09.-10~'2

Table 1: Conic reproduction error for a circle, ellipse, hyperbola and parabola at increasing
subdivision levels k.

are implicit functions of the form f(x,y) = 0 (Equation 3), we can use the output of f(x,y)
to construct an error function. By taking the absolute value and normalizing the resulting
value, we construct an error metric that is independent of the curve density and is proportional
to the defined conic. It should be noted that this error metric is only meaningful when all
control point-normal pairs are sampled from a single conic. For a curve at a given subdivision
level k, we construct what is essentially the mean absolute error over n; samples (vertices

pl(k) = [xi,:]", i € I} of the subdivided curve):

1 & | fxapi
EW=_—Y —v( ) o= |I. (13)
ne 1V f (%, i)
Similarly, we also define the maximum absolute error to catch any outliers:
(k) m | f(xi,yi)
Emax = max | S-S = (. (14)
i=1 f(Xia)’i)
Mean and Max Conic Errors by Subdivision Level Mean and Max Conic Errors by Subdivision Level
10-13{ —e— Mean Error m*Hi —e— Mean Error
Max Error Max Error
10-14 10713
10715 107142
g 107t g 10
1017 10*16—;
10-18 m—n,;
10719 10—18_;
2 4 6 8 10 12 2 4 6 8 10 12
Subdivision Level Subdivision Level
(a) 4x2 +9y? = 36 (b) 4x* —y* =4

Figure 3: Curve precision error £ ) and EI(QX obtained using FINAL for increasing subdivision

levels up to k = 12 on an ellipse (a) and hyperbola (b).
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Mean and Max Normal Errors by Subdivision Level Mean and Max Normal Errors by Subdivision Level
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Max Error
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(a) 4x2 +9y% = 36 (b) 4x* —y* =4

Figure 4: Mean and maximum normal angle error (in degrees) obtained using FINAL for
increasing subdivision levels up to k = 12 on an ellipse (a) and hyperbola (b).

Using these metrics, we investigate the behaviour of the three different implementations:
* the baseline implementation BASE using doubles and no accuracy improvements,

* NORM_SKIP which is the same as the baseline but without the normalization of the
normals,

* FINAL which uses long doubles and sampling accuracy improvements on top of NOR-
M_SKIP.

The baseline implementation uses doubles instead of f1oats as the latter are too inaccurate
to make meaningful comparisons. In Table 1, the results of FINAL with four different conic
types show that even at high subdivision levels, the error between the original and reproduced
conic remains extremely small. In Figure 3, we can see in more detail how E *) and Er(rgx evolve
as the number k of subdivision steps grows. As expected, the error grows exponentially as the
subdivision levels increase, but both £ (%) and Er(rgx remain reasonably low even for k = 12.

In Step 1 of Section 1.1, the normals are copied between subdivision steps. This could
lead to a situation where the final normals of the subdivided curve do not accurately represent
the underlying geometry. To test this, we use the same curves used for Table 1 and compute
the angle differences between the normals obtained from the subdivision scheme (namely nfk),
i € I;) and the normals calculated based on the curve geometry (i.e., estimated from the points
pl(k), i € I). From Figure 4 it can be seen that both of these errors are relatively small and
decrease further as k increases. For a more arbitrary non-convex curve, Figure 5 shows similar
results. It should be noted that it is unlikely for the error to be exactly O as this depends on
how one calculates the “true" normals of a curve. This means that for sufficiently large values
of k, the normals of the control points are equivalent to the normals of the subdivided curve,
demonstrating that our scheme interpolates the input normals in the limit.

Finally, Figure 6 shows the behaviour of the different implementations using curvature
combs. These results were obtained from the curve seen in Figure 6 (a) using a subdivision level
of k = 10. All of the different techniques to reduce numerical errors contribute to obtaining a
smooth subdivided curve, but the most impactful optimisation is the removal of the normal
normalization. Interestingly, when all points lie on a single conic section, enabling the normal

normalization can improve the accuracy. FINAL with normalization then obtains e.g. E k) =
3.47-10716 and EI(QX = 1.37-10~1* for the parabola y = x% at k = 12. However, for any
more general curve, it is evident that the normalization step is crucial for obtaining a smooth
curve. The remaining fluctuations in the curvature combs are the result of how the scheme

N. Biigel, L. Romani, J. Kosinka 12
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Mean and Max Normal Errors by Subdivision Level

—e— Mean Error
Max Error

B e
o © o©o B &
1 S ©°

Normal Angle Error (degrees)
)

-
b

0 2 4 8 10 12

6
Subdivision Level

(b)

Figure 5: Mean and maximum normal angle error (in degrees) obtained using FINAL for
increasing subdivision levels up to k = 12 on a non-convex curve. (a) Reference control polygon
and subdivision curve. (b) Normal angle error plot.

(a) (b) (c) (d)
Figure 6: Smoothness of the subdivided curves for the various implementations shown through
curvature combs. (a) Reference control polygon and subdivision curve. (b) BASE implemen-

tation at k = 10. (c) NORM_SKIP implementation at k = 10. (d) FINAL implementation at
k=10.

works on this particular set of point-normal pairs and not of numerical accuracy problems. As
such, despite the method being very sensitive to numerical errors, the CONIS implementation
is capable of producing highly accurate results even at higher subdivision levels.

4 Conclusions

We have provided an overview of the CONIS framework, the software used to implement
the conic-preserving interpolatory subdivision scheme presented in [3]. The framework was
written in C++ using Eigen, Qt, and OpenGL. The framework has a simple decoupled design
consisting of a stand-alone core library, with a GUI sitting on top. Due to the approximat-
ing nature of the conic fitting process, the implementation uses several techniques to reduce
numerical errors. Through a number of numerical tests and demos, we show that the imple-
mentation produces smooth curves up to high (k > 10) subdivision levels. Additionally, we
provide numerical evidence demonstrating that the scheme interpolates normals for sufficiently
high values of k. A possible future improvement to the CONIS framework would be to extend
the existing unit test suites and use this to improve the robustness of the implementation.
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